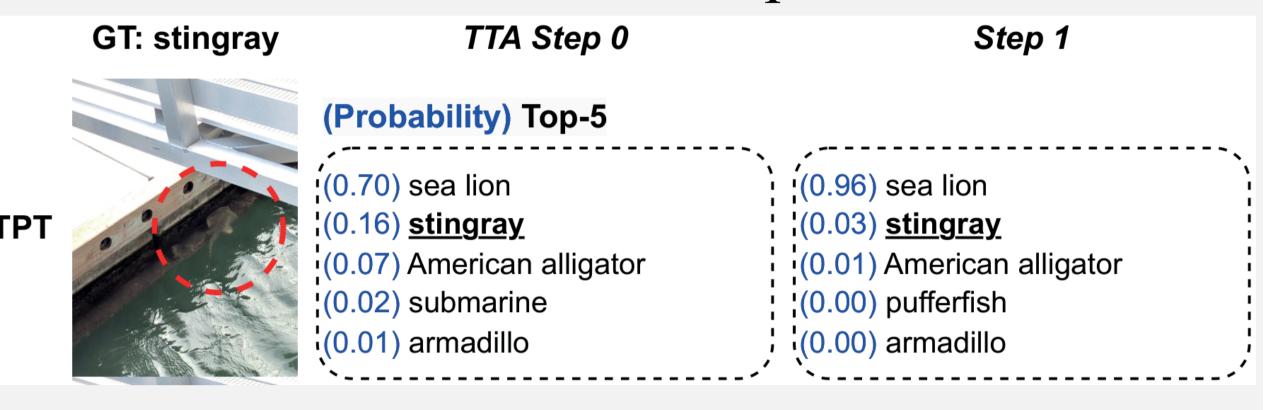
Test Test UTS

Test-Time Adaptation with CLIP Reward for Zero-Shot Generalization in Vision-Language Models

Shuai Zhao, Xiaohan Wang, Linchao Zhu, Yi Yang University of Technology Sydney, Zhejiang University

Task and Problem

Task: TTA with VLMs in 0-shot cases **Problem:** popular entropy minimization methods are stick to incorrect predictions



Feedback in TTA

Solution: feedback mechanism

Feedback source: CLIP! 1) No need for label. 2) CLIP is reliable.

$$CLIP(t, v) = cos(h(t), g(v))$$

Reinforcement Learning with CLIP Feedback (RLCF)

Goal: given a VLM f_{θ} and a single input image \boldsymbol{v} or text \boldsymbol{t} , learn $P = f_{\theta}(\boldsymbol{v})$ or $f_{\theta}(\boldsymbol{t})$ $\max_{\theta} \mathbb{E}_{\boldsymbol{t} \sim P(\cdot | \boldsymbol{v}, \theta)} \mathcal{R}(\boldsymbol{t}, \boldsymbol{v}).$

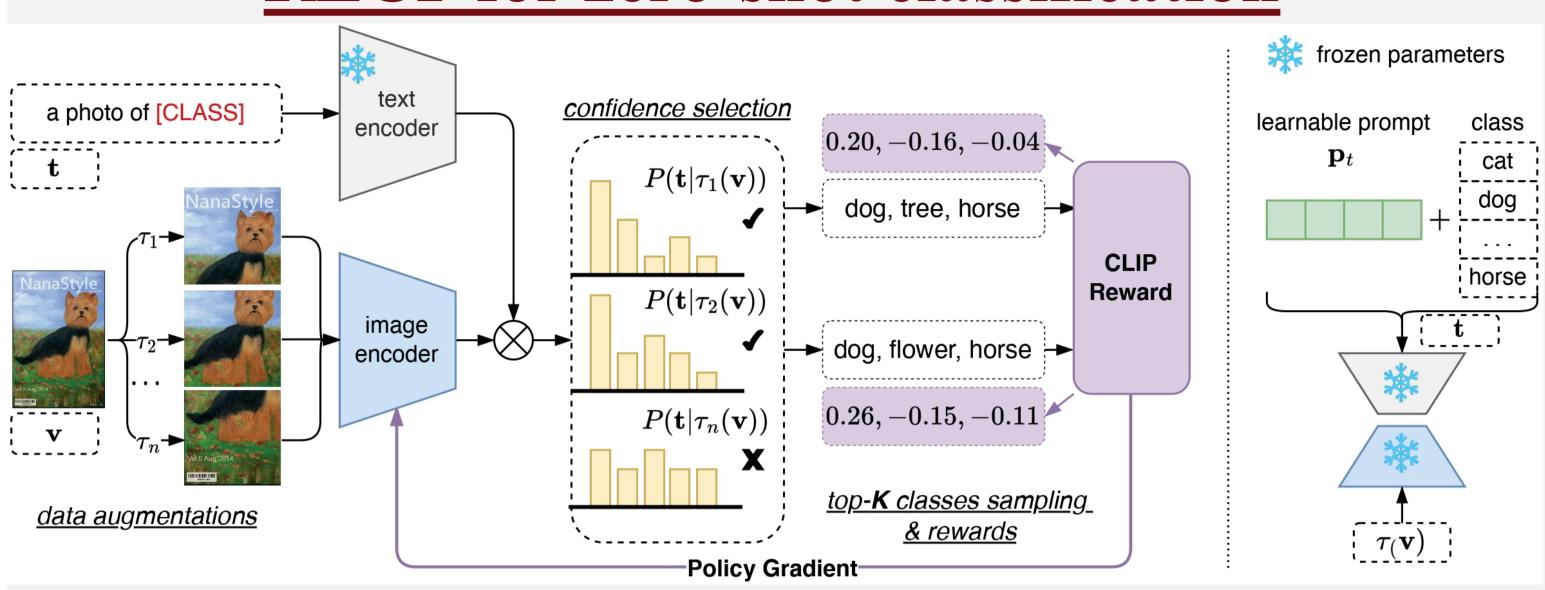
Policy gradient with REINFORCE:

 $\nabla_{\theta} \mathbb{E}_{\boldsymbol{t} \sim P} [\mathcal{R}(\boldsymbol{t}, \boldsymbol{v})] = \mathbb{E}_{\boldsymbol{t} \sim P} [\mathcal{R}(\boldsymbol{t}, \boldsymbol{v}) \nabla_{\theta} \log P(\boldsymbol{t} | \boldsymbol{v}; \theta)].$

CLIP Reward with baseline:

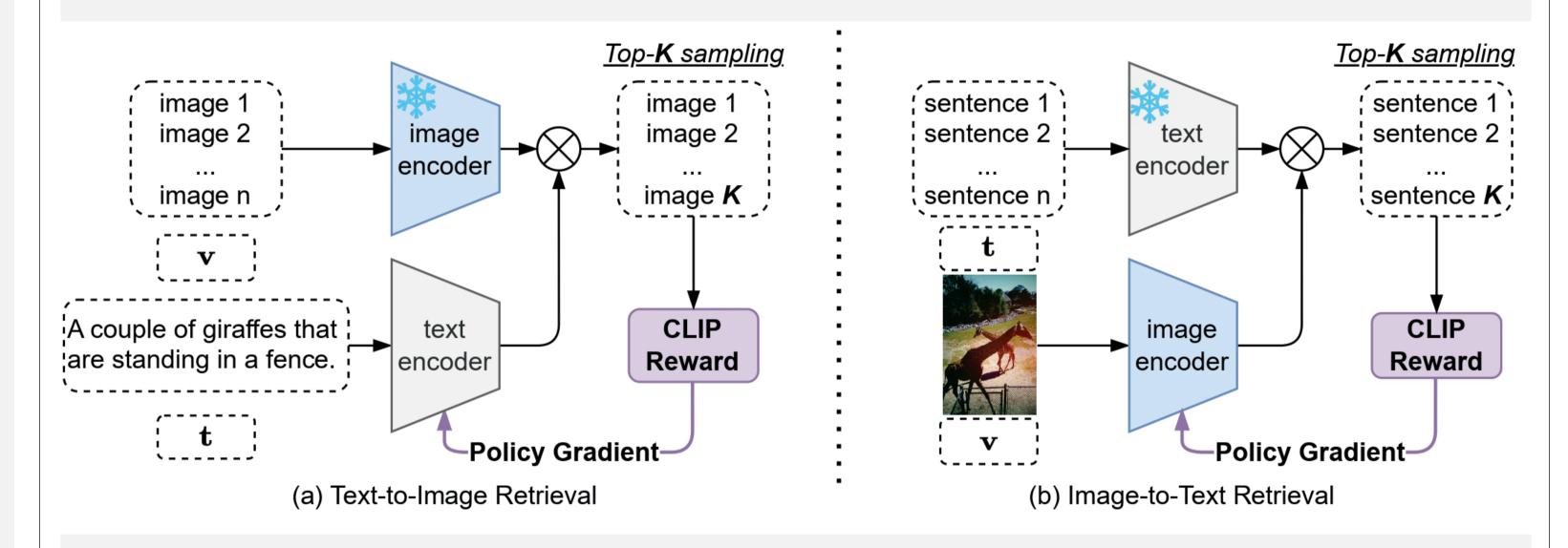
$$\text{CLIP-S}(\boldsymbol{t},\boldsymbol{v}) = w \times \max(\text{CLIP}(\boldsymbol{t},\boldsymbol{v}),0),$$
$$\mathcal{R}(\boldsymbol{t},\boldsymbol{v}) = \text{CLIP-S}(\boldsymbol{t},\boldsymbol{v}) - \mathbb{E}_{\boldsymbol{t}\sim P}[\text{CLIP-S}(\boldsymbol{t},\boldsymbol{v})].$$

RLCF for zero-shot classification



Pipeline: data augmentations \rightarrow confidence selection \rightarrow *top-K* sampling \rightarrow CLIP Reward \rightarrow gradient updating.

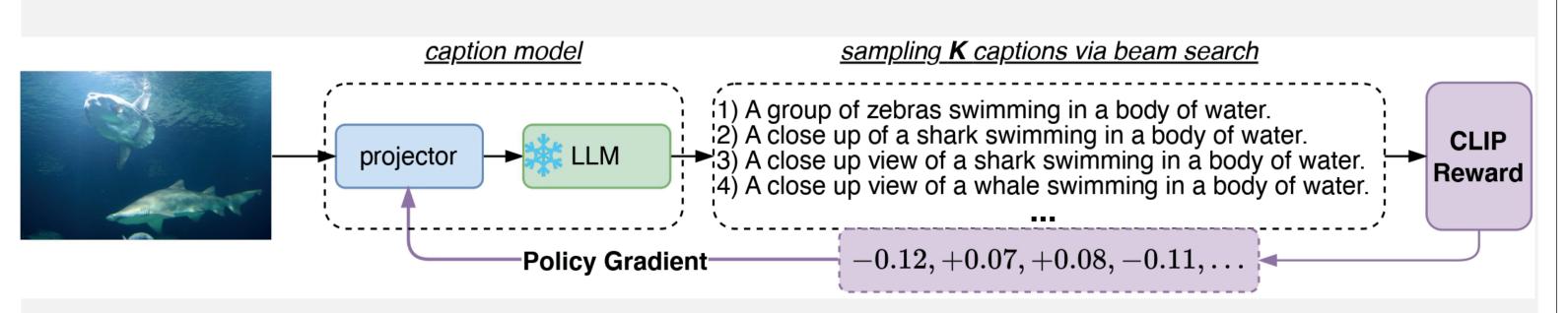
RLCF for zero-shot retrieval



Pipeline: query \rightarrow *top-K* sampling \rightarrow CLIP Reward \rightarrow gradient updating.

We only update the parameters w.r.t. the query.

RLCF for image captioning



Pipeline: image → projection → LLM generation → beam search → CLIP Reward → gradient updating. We only update the parameters of the projector.

Captioning model: CapDec and ClipCap.

Experiments

RLCF: CLIP-L/14 as the reward model.

RLCF-S: CLIP-L/14-336, CLIP-L/14, CLIP-RN50x64

RLCF-S-M: + momentum buffer for continual learning

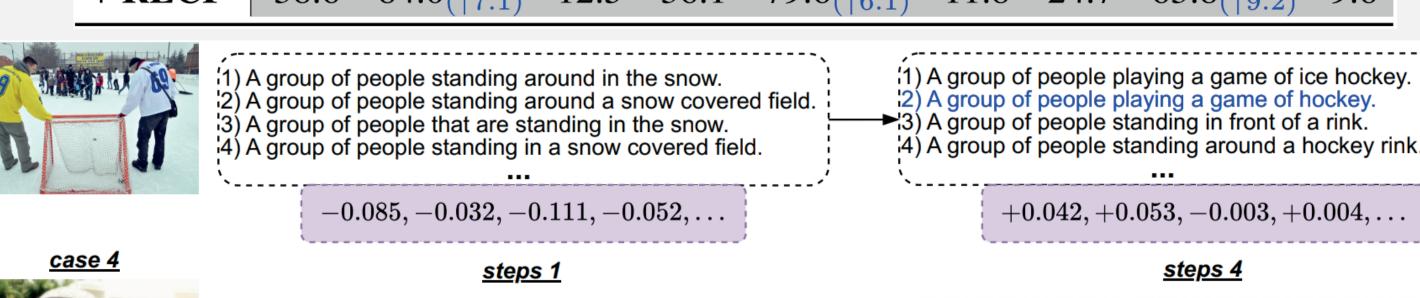
Table 1: Top-1 accuracy of zero-shot image classification. The best and second-best results.

	Method	IN	IN-A	IN-V2	IN-R	IN-Sketch	OOD Avg.			
		Zero-shot baseline								
	CLIP-ViT-B/16	66.73	47.87	60.86	73.98	46.09	57.20			
1	CLIP-ViT-L/14	73.44	68.82	67.80	85.40	57.84	69.97			
	Ensemble (B/16 + L/14)	75.09	65.94	69.02	85.92	57.98	69.72			
		Prompt tuning for CLIP-ViT-B/16								
	TPT + CoOp	73.61	57.95	66.83	77.27	49.29	62.84			
	RLCF	73.23	65.45	69.77	83.35	54.74	68.33			
	RLCF + CoOp	76.05	69.74	70.62	84.51	56.49	70.34			
	RLCF-S + CoOp	76.50	71.11	70.92	84.73	56.97	70.93			
		Image encoder tuning for CLIP-ViT-B/16								
	ATKD	70.51	70.66	65.54	85.12	53.56	68.72			
	RLCF	74.85	73.71	69.77	86.19	57.10	71.69			
	RLCF-S	75.34	75.00	70.08	86.97	57.75	72.45			
	RLCF-S-M	75.48	75.16	70.42	87.23	57.73	72.64			
	Table 2. TTA for zone abot tout image netwickel Improvement in (Ablue)									

	MS-COCO (5K test images)				Flickr30K (1K test images)				
Method	text-to-image		image-to-text		text-to-image		image-to-text		
	R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5	
	Zero-shot baseline								
CLIP-ViT-B/16	33.0	58.2	52.5	76.8	62.2	85.7	81.2	96.4	
CLIP-ViT-L/14	36.1	60.9	56.2	78.9	64.6	87.1	85.3	97.2	
CLIP-ViT-L/14-336	36.6	60.9	57.3	80.6	67.1	88.9	86.6	98.0	
	TTA for CLIP-ViT-B/16								
RLCF	$37.3_{(\uparrow 4.3)}$	62.7	$59.1_{(\uparrow 6.6)}$	80.1	$67.1_{(\uparrow 4.9)}$	89.1	$87.3_{(\uparrow 6.1)}$	97.2	
RLCF-S	()		$60.8_{(\uparrow 8.3)}$						
RLCF-S-M	$38.4_{(\uparrow 5.4)}$		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				\ ' /		

Table 3: **TTA for image captioning**. BLEU@4, CIDEr (gain in (†blue)), and SPICE.

		$MS\text{-}COCO \Longrightarrow NoCaps$									
	Method	in domain			near domain			out domain			
2		B@4	C	S	B@4	C	S	B@4	C	S	
		TTA for CapDec (zero-shot)									
	CapDec	32.4	62.6	$10.\overline{3}$	29.2	54.0	9.6	17.2	31.7	6.4	
3.	+ RLCF	33.3	$68.0_{(\uparrow 5.3)}$	10.7	30.3	$57.9_{(\uparrow 3.9)}$	10.3	17.6	$35.5_{(\uparrow 3.8)}$	6.9	
		TTA for CLIPCap (cross-domain)									
	CLIPCap	36.3	76.9	11.9	34.8	73.5	11.0	22.5	54.6	8.6	
	+ RLCF	38.6	$84.0_{(\uparrow 7.1)}$	12.5	36.1	$79.6_{(\uparrow 6.1)}$	11.8	24.7	$63.8_{(\uparrow 9.2)}$	9.6	
P	,										



steps 1

(1) A woman is wearing a hat and a umbrella.
(2) A woman wearing a hat and a umbrella.
(3) A woman with a hat and a umbrella in a pool.
(4) A woman wearing a hat and a umbrella in a pool.
(4) A woman wearing a hat and a umbrella in a pool.
(4) A woman wearing a hat and a umbrella in a pool.
(4) A woman wearing a hat and a umbrella in a pool.
(5) A woman wearing a hat and sunglasses in a pool.
(6) A woman wearing a hat and a umbrella in a pool.
(7) A woman is wearing a hat and a umbrella.
(8) A woman wearing a hat and a umbrella.
(9) A woman wearing a hat and a umbrella.
(1) A woman is wearing a hat and a umbrella.
(1) A woman is wearing a hat and a umbrella.
(1) A woman is wearing a hat and a umbrella.
(1) A woman is wearing a hat and a umbrella.
(2) A woman wearing a hat and sunglasses in a pool.
(4) A woman with a hat and a umbrella in a pool.
(4) A woman with a hat and a umbrella in a pool.
(4) A woman with a hat and a umbrella in a pool.
(5) A woman wearing a hat and sunglasses in a pool.
(6) A woman wearing a hat and a umbrella in a pool.
(7) A woman is wearing a hat and a umbrella.
(9) A woman wearing a hat and sunglasses in a pool.
(1) A woman wearing a hat and a umbrella.
(1) A woman is wearing a hat and a umbrella.
(1) A woman wearing a hat and a umbrella.
(2) A woman wearing a hat and a umbrella.
(3) A woman wearing a hat and a umbrella.
(4) A woman wearing a hat and a umbrella.
(5) A woman wearing a hat and a umbrella.
(6) A woman wearing a hat and a umbrella.
(7) A woman is wearing a hat and a umbrella.
(8) A woman wearing a hat and a umbrella.
(9) A woman wearing a hat and a umbrella.
(1) A woman wearing a hat and a umbrella.
(1) A woman wearing a hat and a umbrella.
(1) A woman wearing a hat and a umbrella.
(1) A woman wearing a hat and a umbrella.