Adversarial-Learned Loss for Domain Adaptation

Minghao Chen, Shuai Zhao, Deng Cai, Haifeng Liu

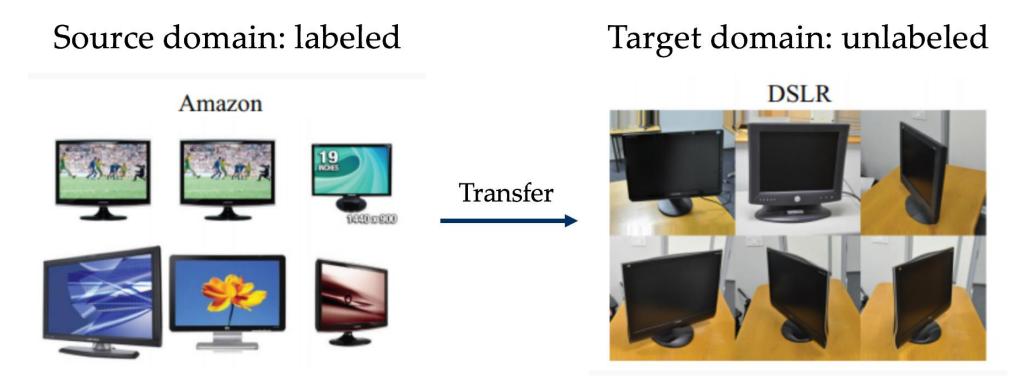
State Key Lab of CAD&CG, College of Computer Science, Zhejiang University, Hangzhou, China; Fabu Inc., Hangzhou, China;

Alibaba-Zhejiang University Joint Institute of Frontier Technologies, Hangzhou, China

Domain Adaptation Task

Unsupervised Domain Adaptation (UDA):

We have labeled data on the source domain and unlabeled data on the target domain. We want to classify the target samples utilizing the source data.



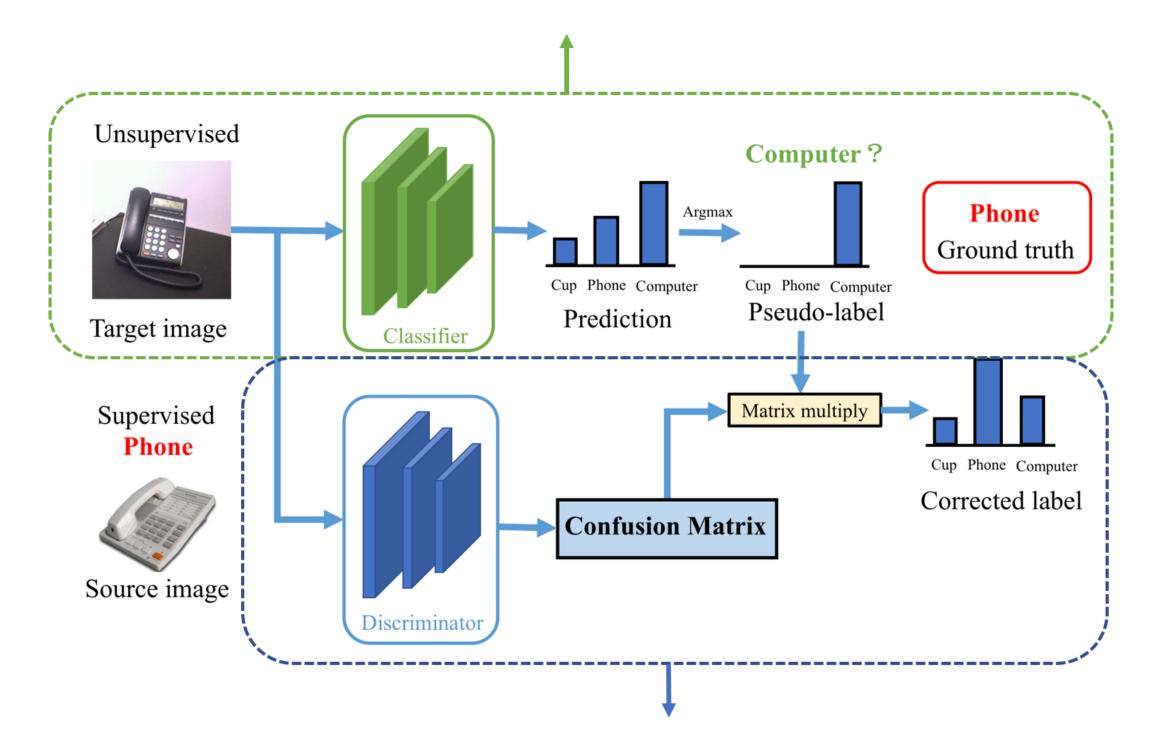
With ground truths

Only Pseudo-labels predicted by the model

Pseudo-labels: we train the model on the source and use pseudo-labels predicted by the model as the training label on the target.

Motivation

• Pseudo-labels might be incorrect and contain noise.



- We can use a discriminator producing a **confusion matrix** to correct the noise in pseudo-labels.
- The discriminator is train by **Noise-correcting Domain Discrimination**, a kind of class-aware domain adversarial learning.

Confusion matrix:

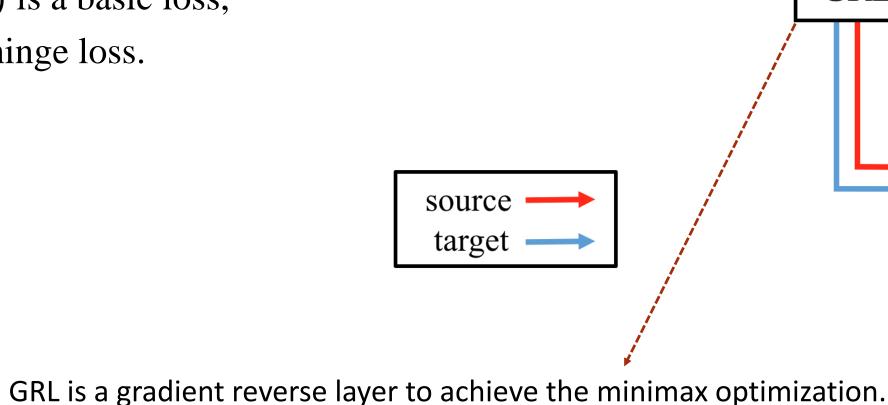
measure the difference between ground truth and pseudo-label.

$$\mathcal{L}_{T}(x_{t}, \mathcal{L}) = \sum_{k=1}^{K} p(y_{t} = k|x_{t}) \mathcal{L}(\mathbf{p}_{t}, k)$$

$$= \sum_{k=1}^{K} \sum_{l=1}^{K} p(y_{t} = k|\hat{y}_{t} = l, x_{t}) p(\hat{y}_{t} = l|x_{t}) \mathcal{L}(\mathbf{p}_{t}, k)$$

$$= \sum_{k=1}^{K} \sum_{l=1}^{K} \eta_{kl}^{(x_{t})} p(\hat{y}_{t} = l|x_{t}) \mathcal{L}(\mathbf{p}_{t}, k),$$

where $\eta^{(x_t)}$ is the confusion matrix, \hat{y}_t is the pseudo-labels, and $\mathcal{L}(p_t, k)$ is a basic loss, e.g. cross entropy loss, unhinge loss.



source target $\widehat{y} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ Pseudo-label

Noise vector $\widehat{y} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ Pseudo-label

Noise vector $\widehat{y} = \begin{pmatrix} \xi_1 & \frac{1-\xi_2}{2} & \frac{1-\xi_3}{2} \\ \frac{1-\xi_1}{2} & \xi_2 & \frac{1-\xi_3}{2} \\ \frac{1-\xi_1}{2} & \frac{1-\xi_2}{2} & \xi_3 \end{pmatrix}$ Confusion matrix

Methods

To simplify the noisy label problem, we assume that the noise is class-wise uniform with vector $\eta^{(x_t)}$:

Definition 1. Noise is *class-wise uniform* with vector $\xi^{(x_t)} \in \mathbb{R}^K$, if $\eta_{kl}^{(x_t)} = \xi_k^{(x_t)}$ for k = l, and $\eta_{kl}^{(x_t)} = \frac{1 - \xi_l^{(x_t)}}{K - 1}$ for $k \neq l$.

We propose to use a discriminator to learn the vector $\xi^{(x_t)}$.

Noise-correcting Domain Discrimination

• Correct pseudo-labels to ground truth for source data:

$$\mathcal{L}_{Adv}(x_s, y_s) = \mathcal{L}_{BCE}(\mathbf{c}^{(x_s)}, \mathbf{y}_s)$$

• Correct pseudo-labels to the opposite distribution for target data:

$$\mathcal{L}_{Adv}(x_t) = \mathcal{L}_{BCE}(\mathbf{c}^{(x_t)}, \mathbf{u}^{(\hat{y}_t)}).$$

Domain adversarial learning the generator and the discriminator.

$$\max_{G} \min_{D} E_{(x_s, y_s), x_t} \mathcal{L}_{Adv}(x_s, y_s, x_t)$$

Corrected Pseudo-labels:

$$\mathcal{L}_{T}(x_{t}, \mathcal{L}_{unh}) = \sum_{k,l} \eta_{kl}^{(x_{t})} p(\hat{y}_{t} = l | x_{t}) \mathcal{L}_{unh}(\mathbf{p}_{t}, k)$$
$$= \sum_{k} \mathbf{c}_{k}^{(x_{t})} \mathcal{L}_{unh}(\mathbf{p}_{t}, k).$$

Quantitative Results

Method	$\mathbf{A} \to \mathbf{W}$	$\mathrm{D} \to \mathrm{W}$	$W \to D$	$\mathbf{A} \to \mathbf{D}$	$\mathrm{D} \to \mathrm{A}$	$W \to A$	Avg
ResNet-50 (He et al. 2016)	68.4 ± 0.2	96.7 ± 0.1	99.3 ± 0.1	68.9 ± 0.2	62.5 ± 0.3	60.7 ± 0.3	76.1
DANN (Ganin et al. 2016)	82.0 ± 0.4	96.9 ± 0.2	99.1 ± 0.1	79.7 ± 0.4	68.2 ± 0.4	67.4 ± 0.5	82.2
ADDA (Tzeng et al. 2017)	86.2 ± 0.5	96.2 ± 0.3	98.4 ± 0.3	77.8 ± 0.3	69.5 ± 0.4	68.9 ± 0.5	82.9
JAN (Long et al. 2017b)	85.4 ± 0.3	97.4 ± 0.2	99.8 ± 0.2	84.7 ± 0.3	68.6 ± 0.3	70.0 ± 0.4	84.3
MADA (Pei et al. 2018)	90.0 ± 0.1	97.4 ± 0.1	99.6 ± 0.1	87.8 ± 0.2	70.3 ± 0.3	66.4 ± 0.3	85.2
CBST (Zou et al. 2018)	87.8 ± 0.8	98.5 ± 0.1	$100{\pm}0.0$	86.5 ± 1.0	71.2 ± 0.4	70.9 ± 0.7	85.8
CAN (Zhang et al. 2018)	92.5	98.8	100.0	90.1	72.1	69.9	87.2
CDAN+E (Long et al. 2017a)	94.1 ± 0.1	98.6 ± 0.1	$100.0 {\pm} 0.0$	92.9 ± 0.2	71.0 ± 0.3	69.3 ± 0.3	87.7
MCS (Liang et al. 2019)	-	-	-	-	-	-	87.8
ALDA	95.6±0.5	97.7±0.1	100.0±0.0	94.0±0.4	72.2±0.4	72.5±0.2	88.7

Table 1: Accuracy (%) of different unsupervised domain adaptation methods on Office-31 (ResNet-50)

Method	$\boldsymbol{U} \to \boldsymbol{M}$	$M \to \boldsymbol{U}$	$S\toM$	Avg	
Sourceonly	77.5 ± 0.8	82.0 ± 1.2	66.5 ± 1.9	75.3	
DANN (Ganin et al. 2016)	74.0	91.1	73.9	79.7	
ADDA (Tzeng et al. 2017)	90.1	89.4	76.0	85.2	
CDAN+E (Long et al. 2017a)	98.0	95.6	89.2	94.3	
MT+CT	92.3 ± 8.6	88.1 ± 0.34	93.3 ± 5.8	91.2	
(French, Mackiewicz, and Fish	er 2018)				
MCD (Saito et al. 2018)	94.1 ± 0.3	96.5 ± 0.3	96.2 ± 0.4	95.6	
MCS (Liang et al. 2019)	98.2	97.8	91.7	95.9	
ALDA ($\delta = 0.9$)	98.1±0.2	94.8±0.1	95.6±0.6	96.2	
ALDA ($\delta = 0.8$)	98.2 ± 0.1	95.4 ± 0.4	97.5 ± 0.3	97.0	δ is the threshold
ALDA ($\delta = 0.6$)	98.6 ± 0.1	95.6 ± 0.3	98.7 ± 0.2	97.6	for pseudo-labels.
ALDA ($\delta = 0.0$)	98.4 ± 0.2	95.0 ± 0.1	97.0 ± 0.2	96.8	Tor poeddo idoeis.
Targetonly	99.5±0.0	97.3±0.2	99.6±0.1	98.8	

Digits datasets: USPS to MNIST (U \rightarrow M), MNIST to USPS (M \rightarrow U), and SVHN to MNIST (S \rightarrow M).

Ground truth

Corrected label

Opposite distribution